Segmentation of Sedimentary Grain in Electron Microscopy Image
نویسندگان
چکیده
This paper describes a novel method developed for the segmentation of sedimentary grains in electron microscopy images. The algorithm utilizes the approach of region splitting and merging. In the splitting stage, the marker-based watershed segmentation is used. In the merging phase, the typical characteristics of grains in electron microscopy images are exploited for proposing special metrics, which are then used during the merging stage to obtain correct grain segmentation. The metrics are based on the typical intensity changes on the grain borders and the compact shape of grains. The experimental part describes the optimal setting of parameter in the splitting stage and the overall results of the proposed algorithm tested on available database of grains. The results show that the proposed technique fulfills the requirements of its intended application.
منابع مشابه
Microscopy image segmentation tool: robust image data analysis.
We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biologica...
متن کاملAutomated image processing for grain boundary analysis.
The image processing used in the automated analysis of grain boundaries and triple junctions in scanning electron microscopy images is described. The required image processing includes the location of grain boundaries and triple junctions, calculation of the dihedral angles at triple junctions, and selection of electron backscatter probe points (to obtain grain orientation data).
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملRobust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملQuantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کامل